Traffic Sign Recognition Using Scale Invariant Feature Transform and Svm

نویسندگان

  • Xiaoguang HU
  • Xinyan ZHU
  • Deren LI
  • Hui LI
چکیده

TSR (Traffic sign recognition) has been studied for realizing drivers assisting system and automated navigation and is an important studied field in ITS (Intelligent traffic system). In this paper, a recognition method of traffic signs separated from real image was studied. Images were divided into several categories according to the actual weather, distance and angle of view etc. SIFT was firstly used to detect keypoints and describe them because the SIFT(Scale Invariant Feature Transform) features were invariant to image scale and rotation and were robust to changes in the viewpoint and illumination. And then the Bag-of-words method was applied to recognition. Finally, the SVM(Support vector machine) approach was used in classification. As shown by the experiment results, the proposed method is effective. * Xiaoguang HU , Ph.D candidate, majors in pattern recognition,GIS and computer vision etc. [email protected].

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pattern Recognition Based Detection Recognition of Traffic Sign Using SVM

The objective of this work describes a method for Traffic sign detection and recognition from the traffic panel board(signage). It detect the traffic signs especially for Indian conditions. Images are acquired through the camera and it is invariant to size then it is scaled. It consist of the following steps, first, it detect the traffic sign, if it has sufficient contrast from the background t...

متن کامل

A Real-time Traffic Sign Recognition System Based on Local Structure Features

We present an accurate and efficient system for traffic sign recognition in a real-world driving scene video. The proposed system uses local structure features to achieve high, illumination-invariant accuracy in detection and recognition. We exploit a property of traffic signs, namely, shared boundary shapes, to enhance the speed and accuracy of the detection step. A multi-level SVM structure i...

متن کامل

Detection of Copy-Move Forgery in Digital Images Using Scale Invariant Feature Transform Algorithm and the Spearman Relationship

Increased popularity of digital media and image editing software has led to the spread of multimedia content forgery for various purposes. Undoubtedly, law and forensic medicine experts require trustworthy and non-forged images to enforce rights. Copy-move forgery is the most common type of manipulation of digital images. Copy-move forgery is used to hide an area of the image or to repeat a por...

متن کامل

Fast Traffic Sign Recognition with a Rotation Invariant Binary Pattern Based Feature

Robust and fast traffic sign recognition is very important but difficult for safe driving assistance systems. This study addresses fast and robust traffic sign recognition to enhance driving safety. The proposed method includes three stages. First, a typical Hough transformation is adopted to implement coarse-grained location of the candidate regions of traffic signs. Second, a RIBP (Rotation I...

متن کامل

Recognition of Sign and Text Using LVQ and SVM

Traffic Sign Recognition (TSR) is used to regulate traffic signs, warn a driver, and command or prohibit certain actions. Fast real-time and robust automatic traffic sign detection and recognition can support and disburden the driver and significantly increase driving safety and comfort. Automatic recognition of traffic signs is also important for an automated intelligent driving vehicle or for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010